

Amelia Angélica Ulloa Torres

Envelhecimento fisico químico de tubulações de polietileno de alta densidade empregadas em redes de distribuição de derivados de petroleo

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Ciência dos Materiais e Metalurgia da PUC-Rio.

Orientador: José Roberto Moraes d'Almeida

Rio de Janeiro

abril de 2007

Amelia Angélica Ulloa Torres

Envelhecimento fisico químico de tubulações de polietileno de alta densidade empregadas em redes de distribuição de derivados de petroleo

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Ciência dos Materiais e Metalurgia da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. José Roberto Moraes d'Almeida Orientador Departamento de Ciência dos Materiais e Metalurgia – PUC-Rio

Prof. Jean Pierre Habas Co - orientador Laboratoire de Physico-Chimie des Polymères – UPPA – Pau (France).

> Profa. Veronica Calado Escola de Quimica - UFRJ

Prof. Marcos Lopes Dias Instituto de Macromoléculas Professora Eloisa Mano - IMA/UFRJ

Professor José Eugenio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 13 de abril de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Amelia Angélica Ulloa Torres

Graduou-se em Engenharia de Materiais na Facultade de Processos na Universidade Nacional de San Agustín - UNSA (Arequipa, Perú) em 2002.

Ficha Catalográfica

Ulloa Torres, Amelia Angélica

Envelhecimento físico químico de tubulações de polietileno de alta densidade empregadas em redes de distribuição de derivados de petróleo / Amelia Angélica Ulloa Torres ; orientador: José Roberto Moraes d'Almeida. – 2007. 180 f. : il. ; 30 cm

Dissertação (Mestrado em Ciência dos Materiais e Metalurgia)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2006.

Inclui bibliografia

 Ciência dos materiais e metalurgia – Teses. 2. Polietileno alta densidade. 3. Tubos. 4. Petróleo. 5. Envelhecimento. 6. Fluência. 7. Difusão. 8. Extracção. 9. Reologia. 10. Termogravimetria. 11. Análise FTIR. Ι. d'Almeida, José Roberto Moraes. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Ciência dos Materiais e Metalurgia. III. Título

CDD: 669

PUC-Rio - Certificação Digital Nº 0521456/CB

Dedicado a meu esposo Jean Pierre, meu filho Matheo e a meu prezado amigo Dimitri pelo apoio e confiança

Agradecimentos

Agradeço ao Senhor meu Deus pelas inúmeras bênçãos que recebo a cada instante de minha vida.

Agradeço a meu orientador Professor José Roberto Moraes D'Almeida pela oportunidade oferecida para poder realizar uma Dissertação de mestrado, pela sua confiança, dedicação, paciência e apoio para poder realizar uma parte deste estudo na França.

Ao meu co-orientador e esposo Professor Jean Pierre Habas por toda sua ajuda, estímulo, por compartir seus conhecimentos, sua perseverancia, e principalmente seu amor sincero e compreensão nos momentos mais dificeis durante o desenvolvimento deste trabalho.

Ao CNPq e à PUC-Rio, pelos auxílios concedidos, para a elaboração deste trabalho.

Aos meus pais, pela educação, atenção, dedicação, palavras de incentivo e carinho de todas as horas.

A Dimitri, pelos momentos de alegria e seu carinho infinito.

A todos os amigos e familiares que de alguma forma agregaram em meu enriquecimento pessoal, me estimularam ou me ajudaram.

Resumo

Ulloa Torres A. A.; Moraes d'Almeida J. R.; Habas J. P.. Envelhecimento físico químico de tubulações de polietileno de alta densidade empregadas em redes de distribuição de derivados de petroleo. Rio de Janeiro, 2007. 180p. Dissertação de Mestrado - Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro.

As tubulações de aço carbono são amplamente usadas em muitas redes de distribuição de transporte de derivados de petróleo. Estas apresentam dois inconvenientes (corrosão e perda da pressão devido à rugosidade interna elevada). Porem, diversas distribuidoras tentaram substituir as tubulações metálicas pelos tubos poliméricos. Entre o material não metálico, o polietileno de alta densidade (PEAD) parece ser uma alternativa mais viavél e econômico. Não obstante, sua aplicação industrial tem mostrado já alguns problemas, tais como inchamento e microfisuras, especialmente nas linhas de distribuição do álcool, óleo e combustível. Assim, nossa pesquisa foi dedicada ao estudo físico químico do envelhecimento do PEAD em contato com derivados do petróleo. Dois líquidos modelos (Diesel e Marcol[®]) foram usados para analisar a influência da espécie aromática e parafínica no envelhecimento do polímero durante 150 dias a T=20°C e 50°C. Primeiramente, fizemos a caracterização do PEAD e dos líquidos modelos antes do envelhecimento, para entender as interações do polímero-líquido. No estudo de envelhecimento, as medidas gravimétricas com experiências TGA fazem possível avaliar a difusão do fluido dentro do PEAD. Os resultados mostraram que apesar da composição aromatica, o diesel, solubilizou as cadeias de baixo peso molecular do polímero. Foram realizados também testes de fluência para investigar os efeitos macroscópicos durante o envelhecimento do PEAD. Para períodos muito curtos de envelhecimento, a flexibilidade do PEAD foi devida à sorção do fluido, para tempos maiores de exposição no gasoil, a plastificação do PEAD é reduzida significativamente devido à extração de unidades poliméricas pequenas, mesmo na temperatura ambiente.

Palavras-chave

Polietileno alta densidade, tubos, petróleo, envelhecimento, fluência, difusão, extracção, reologia, termogravimetria, analise FTIR.

Abstract

Ulloa Torres A. A.; Moraes d'Almeida J. R.; Habas J. P. **Physicochemical** ageing of HDPE pipes assigned to the transportation of petroleum derivatives, Rio de Janeiro, 2007. 180p. Dissertação de Mestrado - Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro.

Carbon steel pipes are widely used for the transportation of petroleum derivates in many distribution networks. However, these pipes present two important drawbacks (corrosion, pressure loss due to high internal roughness...) For these reasons, several petroleum furnishers have examined the opportunity to substitute metallic pipes by polymeric tubes. Among the non-metallic material, high density polyethylene (HDPE) represent a good alternative from a technical and economic point of view. Nevertheless, its application at the industrial scale has already shown some problems such as sweeling and microcracks especially in lines assigned to the distribution of alcohol, oil and fuel. Our research work was devoted to the physicochemical study of the ageing of HDPE samples in contact with petroleum derivatives. Two model fluids (gasoil and Marcol®) were used to analyse the influence of aromatic and paraffinic species on the polymer ageing during 150 days at different temperatures (T=20°C and 50°C). First, we made the characterization of the polymer and of the model fluids before ageing for understand the polymer-liquid interactions. In the ageing study, the gravimetric measurements with TGA experiments made it possible to evaluate the fluid diffusion inside the polymeric matrix. Important discrepancies were shown between gasoil and Marcol® actions. In spite of its aromatic composition, the former was more powerful to solubilize low weight polymer chains. Creep tests were performed to investigate the macroscopic effects on the ageing on the HDPE. For very short periods of ageing time, the HDPE flexibilization was due to the fluid sorption. For higher exposure times in gasoil, the HDPE plasticization is significantly reduced because of the occurrence of the extraction of small polymeric units even at room temperature.

Keywords

high-density polyethylene, pipes, oil, ageing, creep, diffusion, extraction, rheology, thermogravimetry, FTIR analysis.

Sumário

1. Introdução geral

2 Propriedades gerais do polietileno e sua aplicação atual na fabricação	o de
tubulações	25
2.1. Processo de fabricação do Polietileno	25
2.2. Morfologia molecular do polietileno	27
2.3. Propriedades físicas do polietileno	30
2.4. Propriedades químicas do polietileno.	33
2.5. Detalhe sobre as propriedades das tubulações de polietileno	33
2.5.1. Densidade	34
2.5.2. Módulo de elasticidade	35
2.5.3. Resistência aos agentes químicos	35
2.5.4. Comportamento face a microorganismos e roedores	36
2.5.5. Resistência às radiações	36
2.5.6. Estabilidade às intempéries	37
2.5.7. Comportamento face à ação das chamas	37
2.5.8. Características térmicas	37
2.5.9. Características eléctricas	38
2.5.10. Comportamento mecânico em função do tempo	38
2.6. Critérios para escolher o PE para a fabricação de tubulações	38
2.7. Vantagens do polietileno empregado em tubulações	39
2.7.1. Preço	39
2.7.2. Facilidade de união	39
2.7.3. Flexibilidade	40
2.7.4. Inexistência de corrosão	41
2.8. Conclusão	41
3. Caracterização físico-química do duto de pead e dos fluidos modelos	42
3.1. Generalidades	42
3.2. Análises químicas por espectroscopia FTIR	42
3.2.1. Método de ensaio	43
3.2.2. Caracterização espectroscópica FTIR do duto de PEAD	44
3.2.2.1. Fundamento teórico	44

3.2.2.2. Resultados experimentais	45
3.3. Caracterização espectroscópica FTIR dos fluidos modelos	51
3.3.1. Marcol 52	51
3.3.2. O Diesel	52
3.4. Análises termogravimétricas (TGA).	54
3.4.1. Método de ensaio	54
3.4.2. Análise termogravimétrica do PEAD	55
3.4.3. Análise termogravimétrica do Marcol 52	57
3.4.4. Análise termogravimétrica do Diesel	58
3.5. Conclusão	58

4. Elaboração e caracterização físico-química dos corpos de prova extraío	los do
tubo inicial de PEAD	59
4.1. Generalidades	59
4.2. Elaboração dos corpos de Prova	59
4.3. Análises químicas por espectroscopia FTIR	66
4.3.1. Espectro FTIR do PEAD-Brastubo depois da moldagem	66
4.3.2. Análises Comparativas	68
4.3.2.1. Tubo PEAD depois da moldagem vs. PEAD e PEBD virgens	68
4.3.2.2. PEAD Brastubo depois da moldagem com resfriamento	70
4.4. Análises reologicas	71
4.4.1. Análise termomecânica do PEAD	73
4.4.2. Análise espectromecânica do PEAD	76
4.4.2.1. Curva espectromecânica a T=30 °C	77
4.4.2.2. Curvas espectromecânicas entre T=60 °C e 110 °C	79
4.4.2.3. Curvas espectromecânicas para T > 120°C	85
4.4.2.4. Curvas de equivalência tempo-temperatura na zona de fluxo	89
4.5. Análises de Fluência	94
4.5.1. Método de ensaio	94
4.5.2. Análise de fluência do PEAD	95
4.5.3. Modelização da fluência do PEAD	101
4.6. Conclusão	106

5. Efeitos do envelhecimento sobre as propriedades fisicas é-químicas dos	
corpos de prova de PEAD.	107
5.1. Envelhecimento de um polímero	107

5.1.1. Mecanismos de envelhecimento	107
5.1.1.1. Envelhecimento químico	108
5.1.1.2. Envelhecimento físico	109
5.1.2. Metodología geral proposta para o envelhecimento do PEAD	111
5.2. Avaliação do envelhecimento do PEAD mediante gravimetria	112
5.2.1. Preâmbulo	112
5.2.2. Protocolo experimental	113
5.2.3. Descripção dos resultados gravimétricos do PEAD no Diesel	113
5.2.4. Análise de gravimetria do PEAD no Marcol 52®	115
5.2.5. Análise comparativa das gravimétrias do PEAD	116
5.3. Analise Termogravimetrica do PEAD envelhecido.	120
5.3.1. Preâmbulo	120
5.3.2. Caracterização TGA do PEAD envelhecido no Diesel a 20 °C	121
5.3.3. Comparação das TGA do PEAD envelhecido no Diesel a 20 e 50°C	123
5.3.4. Comparação das TGA do PEAD envelhecido no Marcol a 20 e 50°C	124
5.3.5. Análise TGA comparativa do PEAD envelhecido em Marcol e Diesel	125
5.4. Caracterização FTIR da estructura quimica do PEAD envelhecido.	126
5.4.1. Preâmbulo	126
5.4.2. Analise FTIR do PEAD envelhecido no Diesel e no Marcol	127
5.5. Fluência do PEAD envelhecido.	132
5.5.1. Condições experimentais	132
5.5.2. Fluência do PEAD depois do envelhecimento no Diesel	132
5.5.3. Fluência do PEAD depois envelhecimento no Marcol	136
5.6. Conclusão.	137
6. Conclusão geral	139
6.1. Sugestões para trabalhos futuros	141
7 Referências bibliográficas	143
A. Técnicas experimentais	154
B. Teoria do envelhecimento	173

Lista de figuras

Figura 2.1. Representação esquemática da polimerização por adição				
do polietileno [9]	26			
Figura 2.2. Representação esquemática de alguns tipos de				
polietilenos.[10]	27			
Figura 2.3. Modelo representando a estrutura da molécula do				
polietileno	27			
Figura 2.4. Morfología de um polímero semicristalino [2]	28			
Figura 2.5. Representação da estrutura de uma esferulita.[12]	28			
Figura 2.6. Representação das cadeias moleculares em uma célula				
unitária de PE [13]	29			
Figura 2.7. Um segmento de cadeia de polietileno [2]	30			
Figura 2.8. Ilustração esquematica do PEBD (esquerda) e do PEAD				
(direita) [2]	32			
Figura 2.9. Instalação de uma tubulação de PEAD [15]	34			
Figura 2.10. Solda de uma tubulação de Polietileno [32]	40			
Figura 3.1. Formula química do polietileno	44			
Figura 3.2. Espectro infravermelho do PEAD-Brastubo parte interior 48				
Figura 3.3. Detalhe do espectro infravermelho do PEAD-Brastubo na				
região [2500 - 3200 cm ⁻¹] 46				
Figura 3.4. Detalhe do espectro infravermelho do PEAD-Brastubo na				
região [1300 - 1550 cm ⁻¹]	46			
Figura 3.5. Detalhe do espectro infravermelho do PEAD-Brastubo na				
região [600 - 800 cm ⁻¹]	47			
Figura 3.6. Fenômeno dos picos de absorbância dos diferentes modos				
de vibração	47			
Figura 3.7. Fenômeno da vibração C-C	48			
Figura 3.8. PEAD Brastubo inicio parte exterior e interior	50			
Figura 3.9. Espectro IRTF do Marcol 52	52			
Figura 3.10. Espectro FTIR do diesel	53			
Figura 3.11. Curva termogravimétrica do PEAD (N ₂ - 10 °C/min)	56			
Figura 3.12. Curva termogravimétrica do Marcol 52 (N ₂ - 10 °C/min)	57			
Figura 3.13. Curva termogravimétrica do Diesel (N $_2$ - 10 °C/min)				

Figura 4.1. Etapas do corte do duto inicial	61
Figura 4.2. Material empregado para a elaboração dos corpos de prova	62
Figura 4.3. Etapas da manufatura dos corpos de prova	63
Figura 4.4. Esquema do ciclo térmico empregado na manufatura dos	
corpos de prova	64
Figura 4.5. Corpos de prova a analisar	65
Figura 4.6. Espectro infravermelho do PEAD-Brastubo depois do	
moldagem	66
Figura 47 Espectro infravermelho do PEAD-Brastubo antes e depois da	
moldagem	67
Figura 4.8. Espectros comparativos, PEAD-Brastubo, PEAD virgem e	
PEBD virgem	69
Figura 4.9. PEAD Brastubo depois da moldagem com resfriamento	
lento e rápido	70
Figura 4.10. Evolução das propriedades viscoelasticas do PEAD com a	
deformação imposta (T=25 °C, ω = 10 rad s ⁻¹)	72
Figura 4.11. Evolução das propriedades termomecânicas do PEAD (ω	
= 10 rad s ⁻¹)	74
Figura 4.12. Evolução das propriedades termomecânicas do PEAD (ω	
= 10 rad s ⁻¹)	75
Figura 4.13. Representação esquematica da morfologia	
macromolecular do PEAD	76
Figura 4.14. Determinação da região da reologia linear do PEAD	
(T=160 °C ω=10 rad s ⁻¹)	77
Figura 4.15. Curva espectromecánica do PEAD (T= 30 °C)	78
Figura 4.16. Curvas espectromecánicas do PEAD (T= 30 °C)	78
Figura 4.17. Curvas espectromecánicas do PEAD (T= 30 °C a 110 °C).	81
Figura 4.18. Comparaçao dos comportamentos espectromecânicos do	
PEAD a T= 30 °C e T= 110 °C	81
Figura 4.19. Tentativa de construção de uma curva mestra para 30 °C	82
< T < 110 °C	83
Figura 4.20. Análise calorimetrica do PEAD na região [-100 ºC; 270 ºC]	84
Figura 4.21. Detalhe da análise calorimétrica do PEAD na região [0 °C;	
100°C]	84
Figura 4.22. Análise dos comportamentos espectromecánicos do PEAD	
a T= 123 °C e T= 127 °C	85

Figura 4.24. Análise espectromecânica do PEAD à 160 °C	Figura 4.23. Análise espectromecánica do PEAD à 130 °C	86
Figura 4.25. Análise espectromecánica do PEAD à 190 °C.8Figura 4.26. Análise Infravermelhos efeitos da exposição termica doPEAD à 190 °C.Figura 4.27. Curva mestre do PEAD na zona de fluxo (Tref=130 °C)	Figura 4.24. Análise espectromecânica do PEAD à 160 °C	87
Figura 4.26. Análise Infravermelhos efeitos da exposição termica doPEAD à 190 °C8Figura 4.27. Curva mestre do PEAD na zona de fluxo (Tref=130 °C)	Figura 4.25. Análise espectromecánica do PEAD à 190 °C	88
PEAD à 190 °C8Figura 4.27. Curva mestre do PEAD na zona de fluxo (Tref=130 °C)9Figura 4.28. Representação da curva mestre do PEAD no diagramaCole-Cole (Tref=130 °C)	Figura 4.26. Análise Infravermelhos efeitos da exposição termica do	
Figura 4.27. Curva mestre do PEAD na zona de fluxo (Tref=130 °C)9Figura 4.28. Representação da curva mestre do PEAD no diagramaCole-Cole (Tref=130 °C)9Figura 4.29. Curva mestre do PEAD. aplicação do modelo a de Cole-9Cole	PEAD à 190 °C	89
Figura 4.28. Representação da curva mestre do PEAD no diagramaCole-Cole (Tref=130 °C)	Figura 4.27. Curva mestre do PEAD na zona de fluxo (Tref=130 °C)	90
Cole-Cole (Tref=130 °C)	Figura 4.28. Representação da curva mestre do PEAD no diagrama	
Figura 4.29. Curva mestre do PEAD. aplicação do modelo a de Cole- Cole	Cole-Cole (Tref=130 °C)	91
Cole9Figura 4.30. Curva mestre do PEAD. aplicação do modelo Havriliak- Negami9Figura 4.31. Curvas de deformabilidade do PEAD para varias tensões. 99Figura 4.32. Curvas de fluência do PEAD a T=30 °C.9Figura 4.33. Curvas de fluência do PEAD a T=100 °C.9Figura 4.34. Curvas de fluência do PEAD a T=120 °C.9Figura 4.35. Efeitos da temperatura nas curvas de fluência do PEAD com $\sigma_0 = 0.1$ MPa.9Figura 4.36. Efeitos da temperatura nas curvas de fluência do PEAD com $\sigma_0 = 0.5$ MPa.1Figura 4.37. Efeitos da temperatura nas curvas de fluência do PEAD com $\sigma_0 = 1$ MPa.1Figura 4.38. Representação analítica do modelo de Kelvin-Voigt.1Figura 4.39. Comparação das curvas de fluência de um sólido elástico e de um material viscoelástico descrito por o modelo de Kelvin-Voigt.1Figura 4.42. Análise comparativa dos modelos de Kelvin-Voigt a 21Figura 5.1. Representação esquematica de difusão de um líquido dentro de um polímero.1Figura 5.2. Imagen das amostras e do forno empregado para o evelhecimento.1Figura 5.4. Analise gravimétrica do PEAD-Diesel, a 50 e 20 °C até 150 dias de envelhecimento.1Figura 5.4. Analise gravimétrica do PEAD-Marcol 52® em 150 dias de1	Figura 4.29. Curva mestre do PEAD. aplicação do modelo a de Cole-	
Figura 4.30. Curva mestre do PEAD. aplicação do modelo Havriliak- Negami9Figura 4.31. Curvas de deformabilidade do PEAD para varias tensões.9Figura 4.32. Curvas de fluência do PEAD a T=30 °C.9Figura 4.33. Curvas de fluência do PEAD a T=100 °C.9Figura 4.34. Curvas de fluência do PEAD a T=120 °C.9Figura 4.35. Efeitos da temperatura nas curvas de fluência do PEAD9Figura 4.36. Efeitos da temperatura nas curvas de fluência do PEAD9Figura 4.36. Efeitos da temperatura nas curvas de fluência do PEAD9com $\sigma_0 = 0.1$ MPa.1Figura 4.36. Efeitos da temperatura nas curvas de fluência do PEAD1com $\sigma_0 = 0.5$ MPa.1Figura 4.37. Efeitos da temperatura nas curvas de fluência do PEAD1com $\sigma_0 = 1$ MPa.1Figura 4.39. Comparação das curvas de fluência de um sólido elástico1e de um material viscoelástico descrito por o modelo de Kelvin-Voigt.1Figura 4.40. Modelo de Kelvin-Voigt generalizado.1Figura 4.41. Aplicação do modelo de Kelvin-Voigt geralizado 1 tempo.1Figura 5.1. Representação esquematica de difusão de um líquido1dentro de um polímero.1Figura 5.2. Imagen das amostras e do forno empregado para o1evelhecimento.1Figura 5.3. Análise gravimétrica do PEAD-Diesel, a 50 e 20 °C até 1501dias de envelhecimento.1Figura 5.4. Analise gravimétrica do PEAD-Diresel, a 50 e 20 °C até 1501dias de envelhecimento.1Figura 5.4. Analise gravimétrica do PEAD-Diseel, a	Cole	93
Negami9Figura 4.31. Curvas de deformabilidade do PEAD para varias tensões.9Figura 4.32. Curvas de fluência do PEAD a T=30 °C	Figura 4.30. Curva mestre do PEAD. aplicação do modelo Havriliak-	
Figura 4.31. Curvas de deformabilidade do PEAD para varias tensões9Figura 4.32. Curvas de fluência do PEAD a T=30 °C	Negami	94
Figura 4.32. Curvas de fluência do PEAD a T=30 °C	Figura 4.31. Curvas de deformabilidade do PEAD para varias tensões	96
Figura 4.33. Curvas de fluência do PEAD a T=100 °C	Figura 4.32. Curvas de fluência do PEAD a T=30 °C	97
Figura 4.34. Curvas de fluência do PEAD a T=120 °C	Figura 4.33. Curvas de fluência do PEAD a T=100 °C	98
Figura 4.35. Efeitos da temperatura nas curvas de fluência do PEAD 9 com $\sigma_0 = 0.1$ MPa	Figura 4.34. Curvas de fluência do PEAD a T=120 °C	98
com $\sigma_0 = 0.1$ MPa.9Figura 4.36. Efeitos da temperatura nas curvas de fluência do PEAD1com $\sigma_0 = 0.5$ MPa.1Figura 4.37. Efeitos da temperatura nas curvas de fluência do PEAD1com $\sigma_0 = 1$ MPa.1Figura 4.38. Representação analítica do modelo de Kelvin-Voigt.1Figura 4.39. Comparação das curvas de fluência de um sólido elástico1e de um material viscoelástico descrito por o modelo de Kelvin-Voigt.1Figura 4.40. Modelo de Kelvin-Voigt generalizado.1Figura 4.41. Aplicação do modelo de Kelvin-Voigt geralizado 1 tempo.1Figura 5.1. Representação esquematica de difusão de um líquido1figura 5.2. Imagen das amostras e do forno empregado para o1Figura 5.3. Análise gravimétrica do PEAD-Diesel, a 50 e 20 °C até 1501figura 5.4. Analise gravimétrica do PEAD-Marcol 52® em 150 dias de1	Figura 4.35. Efeitos da temperatura nas curvas de fluência do PEAD	
Figura 4.36. Efeitos da temperatura nas curvas de fluência do PEAD $com \sigma_0 = 0.5$ MPa.1Figura 4.37. Efeitos da temperatura nas curvas de fluência do PEAD1 $com \sigma_0 = 1$ MPa.1Figura 4.38. Representação analítica do modelo de Kelvin-Voigt.1Figura 4.39. Comparação das curvas de fluência de um sólido elástico1e de um material viscoelástico descrito por o modelo de Kelvin-Voigt.1Figura 4.40. Modelo de Kelvin-Voigt generalizado.1Figura 4.41. Aplicação do modelo de Kelvin-Voigt geralizado 1 tempo.1Figura 5.1. Representação esquematica de difusão de um líquido1dentro de um polímero.1Figura 5.2. Imagen das amostras e do forno empregado para o1Figura 5.3. Análise gravimétrica do PEAD-Diesel, a 50 e 20 °C até 1501Figura 5.4. Analise gravimétrica do PEAD-Marcol 52® em 150 dias de1	$com \sigma_0 = 0.1 \text{ MPa}$	99
com σ_0 = 0.5 MPa.1Figura 4.37. Efeitos da temperatura nas curvas de fluência do PEAD1com σ_0 = 1 MPa.1Figura 4.38. Representação analítica do modelo de Kelvin-Voigt.1Figura 4.39. Comparação das curvas de fluência de um sólido elástico1e de um material viscoelástico descrito por o modelo de Kelvin-Voigt.1Figura 4.40. Modelo de Kelvin-Voigt generalizado.1Figura 4.41. Aplicação do modelo de Kelvin-Voigt geralizado 1 tempo.1Figura 5.1. Representação esquematica de difusão de um líquido1dentro de um polímero.1Figura 5.2. Imagen das amostras e do forno empregado para o1Figura 5.3. Análise gravimétrica do PEAD-Diesel, a 50 e 20 °C até 1501figura 5.4. Analise gravimétrica do PEAD-Marcol 52® em 150 dias de1	Figura 4.36. Efeitos da temperatura nas curvas de fluência do PEAD	
Figura 4.37. Efeitos da temperatura nas curvas de fluência do PEAD $com \sigma_0 = 1$ MPa.1Figura 4.38. Representação analítica do modelo de Kelvin-Voigt.1Figura 4.39. Comparação das curvas de fluência de um sólido elásticoee de um material viscoelástico descrito por o modelo de Kelvin-Voigt.1Figura 4.40. Modelo de Kelvin-Voigt generalizado.1Figura 4.41. Aplicação do modelo de Kelvin-Voigt geralizado 1 tempo.1Figura 4.42. Análise comparativa dos modelos de Kelvin-Voigt a 21Figura 5.1. Representação esquematica de difusão de um líquido1dentro de um polímero.1Figura 5.2. Imagen das amostras e do forno empregado para o1Figura 5.3. Análise gravimétrica do PEAD-Diesel, a 50 e 20 °C até 1501dias de envelhecimento.1Figura 5.4. Analise gravimétrica do PEAD-Marcol 52® em 150 dias de1	com σ_0 = 0.5 MPa	100
com $\sigma_0 = 1$ MPa.1Figura 4.38. Representação analítica do modelo de Kelvin-Voigt.1Figura 4.39. Comparação das curvas de fluência de um sólido elásticoe de um material viscoelástico descrito por o modelo de Kelvin-Voigt.1Figura 4.40. Modelo de Kelvin-Voigt generalizado.1Figura 4.41. Aplicação do modelo de Kelvin-Voigt geralizado 1 tempo1Figura 4.42. Análise comparativa dos modelos de Kelvin-Voigt a 21Figura 5.1. Representação esquematica de difusão de um líquido1dentro de um polímero.1Figura 5.2. Imagen das amostras e do forno empregado para o1Figura 5.3. Análise gravimétrica do PEAD-Diesel, a 50 e 20 °C até 1501Gias de envelhecimento.1Figura 5.4. Analise gravimétrica do PEAD-Marcol 52® em 150 dias de1	Figura 4.37. Efeitos da temperatura nas curvas de fluência do PEAD	
Figura 4.38. Representação analítica do modelo de Kelvin-Voigt1Figura 4.39. Comparação das curvas de fluência de um sólido elásticoe de um material viscoelástico descrito por o modelo de Kelvin-Voigt1Figura 4.40. Modelo de Kelvin-Voigt generalizado1Figura 4.41. Aplicação do modelo de Kelvin-Voigt geralizado 1 tempo1Figura 4.42. Análise comparativa dos modelos de Kelvin-Voigt a 21Figura 5.1. Representação esquematica de difusão de um líquido1dentro de um polímero	$\operatorname{com} \sigma_0 = 1 \operatorname{MPa}$	100
Figura 4.39. Comparação das curvas de fluência de um sólido elásticoe de um material viscoelástico descrito por o modelo de Kelvin-Voigt1Figura 4.40. Modelo de Kelvin-Voigt generalizado1Figura 4.41. Aplicação do modelo de Kelvin-Voigt geralizado 1 tempo1Figura 4.42. Análise comparativa dos modelos de Kelvin-Voigt a 21tempos	Figura 4.38. Representação analítica do modelo de Kelvin-Voigt	101
 e de um material viscoelástico descrito por o modelo de Kelvin-Voigt Figura 4.40. Modelo de Kelvin-Voigt generalizado	Figura 4.39. Comparação das curvas de fluência de um sólido elástico	
Figura 4.40. Modelo de Kelvin-Voigt generalizado.1Figura 4.41. Aplicação do modelo de Kelvin-Voigt geralizado 1 tempo1Figura 4.42. Análise comparativa dos modelos de Kelvin-Voigt a 21tempos1Figura 5.1. Representação esquematica de difusão de um líquido1dentro de um polímero1Figura 5.2. Imagen das amostras e do forno empregado para o1Figura 5.3. Análise gravimétrica do PEAD-Diesel, a 50 e 20 °C até 1501dias de envelhecimento1Figura 5.4. Analise gravimétrica do PEAD-Marcol 52® em 150 dias de1	e de um material viscoelástico descrito por o modelo de Kelvin-Voigt	102
Figura 4.41. Aplicação do modelo de Kelvin-Voigt geralizado 1 tempo1Figura 4.42. Análise comparativa dos modelos de Kelvin-Voigt a 21tempos	Figura 4.40. Modelo de Kelvin-Voigt generalizado	103
Figura 4.42. Análise comparativa dos modelos de Kelvin-Voigt a 2 1 tempos	Figura 4.41. Aplicação do modelo de Kelvin-Voigt geralizado 1 tempo	104
tempos1Figura 5.1. Representação esquematica de difusão de um líquido dentro de um polímero	Figura 4.42. Análise comparativa dos modelos de Kelvin-Voigt a 2	
Figura 5.1. Representação esquematica de difusão de um líquido 1 dentro de um polímero	tempos	105
dentro de um polímero	Figura 5.1. Representação esquematica de difusão de um líquido	
Figura 5.2. Imagen das amostras e do forno empregado para o evelhecimento	dentro de um polímero	109
evelhecimento1Figura 5.3. Análise gravimétrica do PEAD-Diesel, a 50 e 20 °C até 1501dias de envelhecimento1Figura 5.4. Analise gravimétrica do PEAD-Marcol 52® em 150 dias de	Figura 5.2. Imagen das amostras e do forno empregado para o	
Figura 5.3. Análise gravimétrica do PEAD-Diesel, a 50 e 20 °C até 150 dias de envelhecimento	evelhecimento	11
dias de envelhecimento	Figura 5.3. Análise gravimétrica do PEAD-Diesel, a 50 e 20 °C até 150	
Figura 5.4. Analise gravimétrica do PEAD-Marcol 52® em 150 dias de	dias de envelhecimento	114
	Figura 5.4. Analise gravimétrica do PEAD-Marcol 52® em 150 dias de	

PUC-Rio - Certificação Digital Nº 0521456/CB

envelhecimento	115
Figura 5.5. Efeito da natureza do líquido modelo sobre a gravimétria do	
PEAD a 20 °C	116
Figura 5.6. Efeito da natureza do líquido modelo sobre a gravimétria do	
PEAD a 50 °C	117
Figura 5.7. Determinação prática dos coeficientes de difusão do Diesel	
no PEAD a 50 e 20 ºC	118
Figura 5.8. Determinação prática dos coeficientes de difusão do Marcol	
no PEAD a 50 e 20 ºC	119
Figura 5.9. Curvas TGA do PEAD imerso no Diesel (35 dias de	
envelhecimento a 20 ºC)	121
Figura 5.10. Curvas TGA do PEAD imerso no Diesel (ref e 84 dias de	
envelhecimento a 20 ºC)	122
Figura 5.11. Curvas termogravimetricas comparativas do PEAD-Diesel	
a 20 e 50 ºC	123
Figura 5.12. Curvas TGA do PEAD-Marcol a 20 e 50 °C (84 dias)	124
Figura. 5.13. Curvas termogravimetricas comparativas do PEAD depois	
imersão no Diesel ou Marcol a 20 ºC	125
Figura 5.14. Curvas termogravimetricas comparativas do PEAD depois	
imersão no Diesel ou Marcol a 20 ºC	126
Figura 5.15. Espectros infravermelhos do PEAD-Diesel 50 °C durante o	
envelhecimento	127
Figura 5.16. Detalhe dos espectros FTIR do PEAD-Diesel 50 °C na	
região 3000 a 2600 cm ⁻¹	128
Figura 5.17. Detalhe dos espectros FTIR do PEAD-Diesel 50 °C na	
região 2000 a 1100 cm ⁻¹	129
Figura 5.18. Espectros infravermelho mostrando o efeito da	
temperatura durante o envelhecimento do PEAD-Diesel na região 3100	
e 2600 cm ⁻¹	130
Figura 5.19. Espectro infravermelho mostrando o efeito dos fluidos	
empregados para o envelhecimento do PEAD a 20 ºC na região de	
3100e 2600 cm ⁻¹	131
Figura 5.20. Efeito do tempo de envelhecimento sobre a curva de	
fluência do PEAD-Diesel-20 °C (σ = 0.5 MPa)	133
Figura. 5.21. Efeito do tempo de envelhecido sobre a curva de fluência	
do PEAD-Diesel-50 °C (σ = 0.1 MPa)	134

Figura 5.22. Influença da temperatura de envelhecimento do PEAD-	
Diesel em pequenos tempos de imersão (σ = 0.5 MPa)	13
Figura 5.23. Influença da temperatura de envelhecimento do PEAD-	
Diesel a maiores tempos de imersão (σ = 0.1 MPa)	13
Figura 5.24. Efeito do tempo de envelhecimento sobre a curva de	
fluência do PEAD-Marcol 20 ºC (σ = 1 MPa)	13
Figura 5.25. Efeito do tempo de envelhecimento sobre a curva de	
fluência do PEAD-Marcol-50 °C (σ = 0.5 MPa)	13
Figura A 1 Representação esquemática dos diferentes modos de	
vibração	15
Figura A-2: Vista Geral do Espectrômetro Infravermelho FTIR	15
Figura A-3: Vista Geral do Analizador Termogravimetrico, TGA	15
Figura A-4 Principio de funcionamento do DSC	16
Figura A-5: Representação esquematica de uma mola	16
Figura A-6: Representação esquematica de um amortecedor	16
Figura A-7: modelos de Maxwell (esquerda) e de Kelvin-Voigt (direita)	16
Figura A-8: Modelo de Maxwell geral (esquerda) e de Kelvin-Voigt	
(direita)	16
Figura A-9 comportamento viscoelástico característico dos polímeros	16
Figura A-10 Esquema das diferentes geometrias disponíveis	16
Figura A-11:Etapas de fluência e retirada de tensão para os diferentes	
tipos de materiais	17
Figura A-12: Fluência em um polímero viscoélastico	17
Figura. B1: Efeitos do envelhecimento químico	17
Figura B-2: Mecanismos de Difusão do solvente na amostra, O	
amostra impregnada com o solvente na superficie, @amostra imersa	
no solvente	17

Lista de tabelas

Tabela 2.1. Variação das propriedades do polietileno em função do	
grau de cristalinidade. [14]	31
Tabela 2.2. Algumas propriedades de diferentes tipos de Polietilenos	
[14]	33
Tabela 2.3. Resistência química de tubulações de PE a alguns fluidos	
[18]	35
Tabela.3.1. Interpretação das bandas de absorbância FTIR do PEAD	
(parte interna do duto Brastubo)	49
Tabela 4.1. Interpretação das bandas de absorbância do PEAD	
moldado	67
Tabela 4.2. Parâmetros do modelo de Kelvin-Voigt geralizado a 1	
tempo para σ = 1 MPa	104
Tabela 4.3. Parâmetros do modelo de Kelvin-Voigt generalizado a 2	
tempos para σ= 1 MPa	105
Tabela 5.1. Parâmetros térmico-químicos de envelhecimento	111
Tabela 5.2. Valores coeficientes de difusão do Diesel e do Marcol no	
PEAD a 20 e 50 ºC	119
Tabela 5.3. Valores dos coeficientes de difusão de aqua no PP a 20 e	
50 °C [95]	120

Lista de símbolos

t	tempo
Τ	temperatura
T _i	temperatura inicial
T _f	temperatura final
T _g	temperatura de transição vítrea
δ	ângulo de fase
σ	tensão
σ(ω)	tensão de cisalhamento alternada
ω	freqüência de cisalhamento
ω _c	freqüência angular
γ _o	amplitude de deformação
γ(ω)	deformação resultante
G"	módulo de perda
G'	módulo de armazenamento
α _c	relaxação mecânica das zonas amorfas "forçadas"
α	relaxação das zonas amorfas clássicas
a _T	fator de deslocamento horizontal
b _T	fator de deslocamento vertical
τ	tempo de relaxação
G_0	amplitude do módulo de cisalhamento
G*(ω)	módulo complexo de cisalhamento
η*(ω)	viscosidade complexa
η	viscosidade
η/G	tempo de retardo
η ₀	viscosidade no estado fundido

$\eta_1 e \eta_2 \dots$	viscosidades limites
$\alpha_1 e \alpha_2 \dots$	índices de distribuição
γ(t)	deformação resultante
J(t)	compliância
G	rigidez
f(t)	função fluência
k	constante de Boltzmann
ν	freqüência de radiação
h	constante de Planck
χsp	coeficiente de interacção
V	volumen molar do solvente
R	constante dos gases perfeitos
δ _s	parâmetro de solubilidade do solvente
δ _p	parâmetro de solubilidade do polímero
χ _s	termo de entropía
M _w	massa do polímero com o solvente
M _o	massa inicial do polímero
D	coeficiente de difusão
M_∞	quantidade de fluido absorvida
M _t	quantidade de fluido absorvida no tempo t
L	esspesura da amostra
Р	inclinação

Lista de siglas

DSC	Analise diferencial de varredura
FTIR	Fourier Transformed InfraRed spectroscopy
ATR	Reflectância Total Atenuada
TGA	Análise termogravimétrica
TG	Termogravimetria
DTG	Termogravimetria derivativa
PE	Polietileno
PEAD	Polietileno de alta densidade
PEBD	Polietileno de baixa densidade
XLPE	Polietileno reticulado ou entrecruzado
PTFE	Politetra fluoro etileno
PVC	Policloreto de vinil
CPVC	Policloreto de vinil clorado
UV	Ultravioleta